Structural and textural effects of TeO₂ added to MoO₃

J. C. J. BART*, A. MARZI, F. PIGNATARO, A. CASTELLAN, N. GIORDANO† Montedison, Research Center, 20021 Bollate, Milano, Italy

Morphological and microstructural characterization of the MoO_3 -TeO₂ system has shown interparticle cementation of MoO_3 agglomerates by Te₂MoO₇ and second phase deposition along the cleavage planes in MoO_3 crystallites. The main morphological parameters of the binary system reflect the behaviour of the liquidus curve in the phase diagram. The size and shape of the component grains in the solid were determined. The porosity of the grains diminishes with increasing mobility of the matter during activation. Intergranular embrittlement of the solid and brittle fracture of MoO_3 crystallites due to oxygen depletion during reduction were examined by optical microscopy. The results are discussed in relation to the use of the MoO_3 -TeO₂ system in oxidation catalysis.

1. Introduction

The present study was undertaken to contribute to the knowledge of a multicomponent industrial catalyst for the ammoxidation of propylene, based partially on TeO₂ and MoO₃. Related investigations [1, 2] have provided detailed information about the phase relationships in the binary oxide system: chemical interaction has shown to lead to the formation of a new phase, Te₂MoO₇, influencing the sintering and crystallization process, as well as the physical properties.

In this paper we limit ourselves to the effects of the addition of TeO_2 on the morphological and microstructural properties of MoO_3 . The phenomenology of interface formation at MoO_3 grain boundaries by interaction with TeO_2 is described and the influence of the second phase on the embrittlement of MoO_3 particles is indicated as a function of the composition. Structure and texture of MoO_3 -Te₂MoO₇ aggregates were also investigated optically after etching with reducing agents. This study thus contributes to the general knowledge of textural modifications induced by chemical interactions and to the evaluation of the properties of Te-Mo based oxidation catalysts [3, 4].

2. Experimental

2.1. Sample preparation

As the same procedure was used for all binary oxide compositions, we report here the conditions for the preparation of the sample with molar ratio MoO_3 :TeO₂ = 12:1. To 111 g $(NH_4)_6Mo_7O_{24}.4H_2O$ (Rudi Pont), dissolved in 150 ml hot water, are added 11.95 g H_6TeO_6 (Schuchardt) and 40 ml 65% HNO₃. The mixture, brought to dryness at 110°C (12 h), is subsequently activated at the desired temperature.

Other compositions were prepared by varying the calculated amount of solid reagents. The final compositions were checked by atomic absorption techniques and were always in accordance with the theoretical formulations. Depending upon activation and quenching conditions (partially) crystalline or amorphous samples were obtained.

Binary oxide compositions supported on microspheroidal SiO₂ (75%) were prepared, as described for the sample $3\text{TeO}_2.12\text{MoO}_3$. A solution of 19.2 g (NH₄)₆Mo₇O₂₄.4H₂O in 6.4 ml H₂O and 6.4 ml H₂O₂ is added to 6.12 g H₆TeO₆ dissolved in 25 ml H₂O and 10 g 65% HNO₃. After impregnation of 64.3 g SiO₂ (Ketjen) the resulting mass is brought to dryness

^{*}Present address: Montedison Corporate Research Laboratories, Novara.

[†]Present address: Montedison Research Laboratories, Priolo, Sicily.

at 110°C for 4 h and is activated in air at 500°C for 8 h.

Reference will be made to the various samples by the atomic ratio $Mo_x Te_y$, labelled A (amorphous) or C (crystalline), according to the calcination conditions: 8 h, 550°C and 8 h, 600°C (A) or 24 h, 450°C (C).

2.2. Physical-chemical characterization

Batches of the samples were analysed by various techniques, as indicated below. Surface areas were calculated from the amount of N₂ absorbed from a N₂-He stream, at liquid nitrogen temperature [5]. Pore volume and pore size distribution in the range from 75 to 75 000 Å were measured by a mercury-porosimeter (C. Erba model AG/60). Total pore volume was determined by the water titration method [6]. Particle size distribution was obtained microscopically by planimetric methods. Optical microscopy measurements were performed on a polarising Ortholux Leitz microscope, up to × 1200 magnification. High refractive indexes were determined using a universal stage by comparison with sulphur and selenium mixtures (Merwin mixtures) [7]. X-ray diffraction techniques were used to confirm the phase distribution.

3. Results

3.1. Phase distribution

Four optically distinct phases were found in the samples of the binary oxide system: MoO_3 , TeO_2 (paratellurite), Te_2MoO_7 and an amorphous phase. The colourless MoO_3 crystallites

are characterized by parallel extinction, marked idiomorphism, prismatic habit and exhibition of a network of cleavages. MoO₃ has refractive indices $n_X(\text{Li}) = 2.09, n_Y(\text{Li}) = 2.26, n_Z(\text{Li}) =$ 2.36; the crystals are biaxial negative (-), $2V = -66^{\circ}$. Partially reduced specimens are bluish, especially at the cleavages. Paratellurite crystals are prismatic, uniaxial positive (+), with E = 2.36 and O = 2.24. Te₂MoO₇ was found as pale-yellow spherulitic aggregates or as prismatic translucent crystals, often with random MoO₃ inclusions. The compound has refractive indices varying between 2.10 and 2.20 and lacks pleochroism. Optically isotropic (amorphous) material is present mainly as bright yellow conchoidal fragments, appearing dark under crossed nicols or showing anomalous polarization produced by strain within the crystal.

3.2. Morphological study

Loading of MoO₃ with TeO₂ causes drastic structural and textural changes in the solid through chemical reaction and incipient sintering phenomena; these effects are clearly illustrated by results of surface area (*SA*) and pore volume (V_p) measurements, as shown in Fig. 1 for samples calcined at 450°C (series C). Furthermore, optical microscopy indicates that the porosity of the original irregularly shaped grains of MoO₃ diminishes on addition of tellurium, leading to rather well-defined crystals when the composition Te₂MoO₇ is reached. This behaviour is in accordance with the results of the phase diagram, as qualitatively expressed by the liquidus curve (Fig. 2) [2].

Figure 1 Surface areas and pore volumes of TeO₂-MoO₃ samples calcined at 450°C for 8 h (series C).

Figure 2 Phase diagram of the binary oxide system TeO_2 -MoO₃.

Considering the various samples in the succession, we observe that the grain size of the MoO_3 crystallites diminishes with increasing tellurium content and depends upon the calcination conditions: higher activation temperatures (A-series) favour crystal-growth of the MoO_3 crystallites in otherwise amorphous samples. The yellow colour of the crushed grains of crystalline samples gradually brightens

with increasing tellurium content. Calcination at higher temperature (600°C) imparts an even brighter yellow colour to the samples (A-series).

Optical examination of the sliced $Mo_{12}Te_1/A$ sample shows an open structure with polyhedral interparticle cavities and particles consisting of idiomorphic MoO_3 aggregates impregnated in correspondence to cleavages and cemented by a yellow optically isotropic mass (Figs. 3 and 4).

Figure 3 Microphotograph of the $Mo_{12}Te_1/A$ samples; $\times 10^3$. (a) Transparent light, (b) key: solid areas, mainly amorphous; dotted areas, MoO_3 ; open areas, cavity.

Figure 4 Microphotograph of the $Mo_{12}Te_1/A$ sample; \times 350. Transparent light.

X-ray diffraction detects MoO_3 and indicates the presence of non-crystalline material which should contain tellurium. At higher tellurium contents, up to $Mo_{12}Te_4/A$, the structure is more compact, initially with worn polyhedral cavities, then well-rounded ones (Fig. 5); MoO_3 crystals exhibit a finer grain size.

Samples calcined at 450° C (C-series) consist of pseudocrystals built up of microcrystalline MoO₃ aggregates, cemented by an optically anisotropic yellow-coloured crystalline material, presumably Te₂MoO₇. Tellurium-poor specimens (< 20 mol % TeO₂) have an open structure with polyhedral cavities (Fig. 6a), whereas the grains of TeO₂ richer samples contain microspheroidal cavities, indicating large sintering effects (Fig. 6b). The interparticle cement forms aggregates

Figure 5 Microphotographs of the $Mo_{12}Te_2/A$ (a) and $Mo_{12}Te_4/A$ (b) samples; \times 350. Transparent light.

Figure 6 Microphotographs of the $Mo_{13}Te_2/C$ (a) and $Mo_{12}Te_4/C$ (b) samples; $\times 10^3$. Transparent light. 1032

of macrocrystals with poikiloblastic texture, containing inclusions of MoO_3 . The Te_2MoO_7 $(Mo_{12}Te_{24})$ specimen is constituted of grains of vacuolar structure with polyhedral cavities. The kind of radial structure of the homogeneous mass points to recrystallization in the solid state (Fig. 7). In TeO_2 rich samples $(Mo_{12}Te_{36}/C)$

Figure 7 Microphotograph of the $Mo_{12}Te_{24}/C$ sample; \times 350. (a) Transparent light, (b) radial structure of the homogeneous mass.

crystallization also occurs radially and a second component (paratellurite) is present with a much finer grain size.

To provide more detailed information on the distribution of the various components of the system, intergranular embrittlement and brittle fracture due to oxygen depletion were observed during reduction experiments, carried out at room temperature with reducing agents consisting of either diluted SnCl₂/HCl and/or Zn/HCl solutions (the latter being the stronger). Chemical attack with the SnCl₂/HCl solution leads to disgregation of the agglomerates, with ultimate particle size distributions as shown in Fig. 8a. Optical microscopy clearly shows accumulation of reduced fines and dusky powder on top of the MoO₃ grains. Comparison with samples before reduction indicates no significant modifications with respect to the original grain size of MoO₃, at least up to $Mo_{12}Te_8/C$; at this composition, a bimodal particle size distribution is observed which chemical analysis helps to attribute to reduced Te_2MoO_7 and "MoO₃". Further, by creating an appropriate redox gradient in a solvent it became possible to segregate mechanically the binary compound from the MoO₃ matrix (Fig. 10). Samples of $Mo_{12}Te_{24}/C$ and those containing excess of TeO₂ degrade slowly into a solid with finer grain size distribution, differing considerably from the original samples. Higher resistance to disintegration of tellurium-rich samples clearly reflects larger sintering effects in this region (Fig. 1).

Comparison of particle size distributions as a result of previous treatment (Fig. 8a) and of successive attack with Zn/HCl (Fig. 8b) shows no differences in the unimodal grain size distribution for samples up to $Mo_{12}Te_4/C$. In contrast, the bimodal distribution found in the Mo₁₂Te₈/C sample changes the mean diameters from $\Phi = 2.2$ and 0.75 μ m after attack with the weakest reducing agent into $\Phi = 2.2$ and 0.58 μm after leaching with the stronger reductant. Similar measurements for Mo₁₂Te₂₄/C following mild and strong reduction lead to unimodal distributions with $\Phi = 0.70$ and 0.50 μm respectively. It thus appears that the second attack diminishes the mean diameter of the grains of the cementing agent.

As to the $Mo_{12}Te_{ac}/A$ series, results of reduction experiments are shown in Fig. 9a and b respectively for the first (SnCl₂/HCl) and after the successive attack by Zn/HCl. Large differences are evident in the case of $Mo_{12}Te_1$ and $Mo_{12}Te_2$, as much finer grain sizes are found after the strongest attack.

4. Discussion

The results reported above evidentiate that addition of TeO_2 favours agglomeration of

Figure 8 Particle size distribution of samples after reduction with $SnCl_2/HCl$ (a) and successive attack by Zn/HCl (b); $\triangle Mo_{12}Te_2/C$, $\square Mo_{12}Te_2/C$, $\blacktriangle Mo_{12}Te_4/C$, $\bigcirc Mo_{12}Te_8/C$, $\bullet Mo_{12}Te_{24}/C$.

Figure 9 Particle size distribution of samples after reduction with $SnCl_2/HCl$ (a) and successive attack by Zn/HCl (b); $\triangle Mo_{12}Te_1/A$, $\bigcirc Mo_{12}Te_2/A$, $\square Mo_{12}Te_4/A$.

Figure 10 Dark-field microphotograph of a grain of a binary oxide mixture MoO_3 -TeO₂ under the action of a reducing front.

 MoO_3 crystals. This effect occurs via formation of an amorphous or crystalline Te–Mo binary oxide, capable of permeation through large interparticle spaces and cementing the MoO_3 crystallites (Figs. 3 to 7).

The idiomorphism of MoO₃ grains contrasts to the allotriomorphic character of Te_2MoO_7 ; the coverage of the MoO₃ crystals with the binary oxide is thus rationalized. The role of the binary oxide as interparticle ligand is also consistent with the chemical interaction concepts discussed elsewhere [1], considering that the binary mixtures have lower melting points (Te₂MoO₇ m.p. = 551° C, eutectics at 526 and 543°C) and as a consequence TeO₂-loaded MoO₃ has a "lower" viscosity than MoO₃, with higher mobility of the solid. Owing to this, Te₂MoO₇ permeates through the mass causing fragmentation of the original grains of MoO₃ down to a finer grain size, as the TeO₂ content is increased. On the macroscopic scale, volume migration manifests itself in TeO₂-loaded MoO₃ by the agglomeration of the particles into more ordered and compact structures, with disappearance of interparticle cavities. The coalescence of elementary particles to form more compact ones is reflected in the pore volume and surface area values which drop rapidly with increasing tellurium contents, reaching minimum values between 50 and 80 mol % TeO₂ for samples calcined at 450°C (Fig. 1). This behaviour is in accordance with the expectation based on the phase diagram (Fig. 2) namely, the lowest melting points are comprised in this

region with an absolute minimum (526°C) in correspondence with the eutectic of Te_2MoO_7 and MoO_3 (55 mol % TeO₂). Thus loading of MoO_3 with TeO_2 results in an increase of low melting components and thus favours sintering phenomena, as is demonstrated by the variations in surface area and pore volumes; this is also common to the supported systems.

Reduction experiments performed at room temperature and followed by means of microphotography give evidence for a larger variation in intergranular strength as a function of TeO₂ content. MoO₃ crystals which do not disintegrate in a SnCl₂/HCl solution contrast to TeO₂ loaded samples, confirming the cementing function of Te_2MoO_7 . The grain size distribution after attack by reducing agents (Figs. 8a and b, 9 a and b) confirms qualitatively the observations concerning the dependence of the grain size of MoO₃ upon composition and preparative route. It further shows clearly that MoO₃ influences the reducibility of the binary oxide. In samples in which a binary oxide layer covers crack-free MoO_3 grains, as in $Mo_{12}Te_1 - Mo_{12}Te_4/C$ (Fig. 6) and $Mo_{12}Te_4/A$ (Fig. 5), the grain size distribution of MoO₃ after reduction is quite independent on the strength of the reducing agent (Figs. 8 and 9). Other samples, usually those consisting of irregular and fractured grains, as $Mo_{12}Te_1-Mo_{12}Te_2/A$ (Fig. 4), have a different behaviour (see below). The difference is understood by considering Fig. 11, which shows a sliced section of a $Mo_{12}Te_1/A$ sample in a Merwin mixture [7]: by this means, it was possible to show Te₂MoO₇ deposition on

Figure 11 Microphotograph of a sliced section of the $Mo_{12}Te_1/A$ sample in a Merwin mixture; $\times 10^3$.

continuous internal surfaces, and thus loci of high embrittling element concentration and preferred fracture paths in the crystals. In these cases the grain size varies with the strength of the reducing agent (Fig. 9a and b), as a stronger medium leads to cracking of MoO₃ grains along less accessible permeated fractures. These findings are to be compared with the fine grain size of the pure Mo₁₂Te₂₄ (Te₂MoO₇) sample (Fig. 8a and b) after chemical treatment, which varies with the reducing power of the reagent and depends on the chemical nature of the compound. On the other hand, in view of the high mobility of the low melting solid, physical factors, such as the presence of imperfections in crystals, are not expected to play a role in providing numerous sites for chemical attack. The slow rate of disintegration by reduction of samples with a high TeO₂ content is explained by their compact structure.

The cementing function of Te_2MoO_7 , i.e. the coverage of MoO_3 particles by the binary compound appears to provide a reasonable explanation for the observed trend in the catalytic properties. The system described represents some typical features of "adlineation" promotion in catalysis, as illustrated in Fig. 12

Figure 12 Conversion (in %) of propylene in the ammoxidation reaction over $\text{TeO}_2-\text{MoO}_3/75\%$ SiO₂ catalysts at 440°C as a function of the mol % TeO₂.

for the conversion of propylene at 440°C in the ammoxidation reaction, using catalysts consisting of 25% active phase (Te-Mo oxides) supported on microspheroidal SiO₂ [8]. Thus, following the observations for the isolated system TeO_2 -MoO₃, the promoting effect of small amounts of TeO_2 may derive from the

high fraction of surface Te_2MoO_7 , a compound which is more reducible than MoO_3 .

5. Conclusions

Loading of MoO₃ with TeO₂ causes drastic changes in morphology (porosity, structure, texture and surface topology) of the solid depending upon the activation conditions and composition. The morphological properties of the MoO₃-TeO₂ system closely follow the chemical interactions occurring in the system, in accordance with the phase diagram, and vary more drastically for silica supported samples than for the binary oxide mixtures. Experimental evidence supports a model for binary oxide samples consisting of impregnated MoO₃ aggregates cemented by an intergranular Te₂MoO₇ surface. Reduction at room temperature leads to intergranular embrittlement due to oxygen depletion at grain boundaries and brittle fracture of MoO₃ crystallites in correspondence to second phase deposition (Te_2MoO_7) on the internal surfaces. The equilibrium grain size distribution varies with the reducing agent and time, as well as with the composition and morphological properties of the sample. This holds both for mixed oxide compositions and Te₂MoO₇, thus excluding that the effects of the reducing agent may simply be attributed to dissolution of the cementing material.

References

- 1. J. C. J. BART, G. PETRINI and N. GIORDANO, Z. Anorg. Allg. Chem. (in press).
- G. PETRINI, J. C. J. BART, P. PERISSINOTO and N. GIORDANO, Proceedings of the 4th ICTA, Budapest, 8-13 July, 1974.
- 3. N. GIORDANO and G. CAPORALI, Congrès Intern. du Cinquantenaire Soc. Chim. Industr., Paris, 24-31 May, 1968.
- 4. V. N. ZHIZNEVSKII, E. V. FEDEVICH, O. M. PIKULYK, V. YA. SHIPAILO and D. K. TOLOPKO, Kinet. i. Kataliz 13 (1972) 1488.
- 5. F. M. NELSEN and F. T. EGGERTSEN, Anal. Chem. 30 (1958) 1387.
- 6. AMERICAN PETROLEUM INSTITUTE, "Physical Properties of Cracking Catalysts: A Progress Report" (1959) p. 37.
- 7. H. E. MERWIN and E. S. LARSEN, Amer. J. Sci. 34 (1912) 42.
- G. CAPORALI, N. FERLAZZO and N. GIORDANO (to Montecatini-Edison), U.S. Pat. 3,691,224 (12 September, 1972).

Received 28 August and accepted 20 November 1974.